SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Endokrinologi och diabetes) ;pers:(Carlsson Per Ola);srt2:(2015-2019)"

Search: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) hsv:(Endokrinologi och diabetes) > Carlsson Per Ola > (2015-2019)

  • Result 1-10 of 34
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bhandage, Amol K., 1988-, et al. (author)
  • GABA Regulates Release of Inflammatory Cytokines From Peripheral Blood Mononuclear Cells and CD4+ T Cells and Is Immunosuppressive in Type 1 Diabetes
  • 2018
  • In: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 30, s. 283-294
  • Journal article (peer-reviewed)abstract
    • The neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule in the brain and in pancreatic islets. Here, we demonstrate that GABA regulates cytokine secretion from human peripheral blood mononuclear cells (PBMCs) and CD4+ T cells. In anti-CD3 stimulated PBMCs, GABA (100nM) inhibited release of 47 cytokines in cells from patients with type 1 diabetes (T1D), but only 16 cytokines in cells from nondiabetic (ND) individuals. CD4+ T cells from ND individuals were grouped into responder or non-responder T cells according to effects of GABA (100nM, 500nM) on the cell proliferation. In the responder T cells, GABA decreased proliferation, and inhibited secretion of 37 cytokines in a concentration-dependent manner. In the non-responder T cells, GABA modulated release of 8 cytokines. GABA concentrations in plasma from T1D patients and ND individuals were correlated with 10 cytokines where 7 were increased in plasma of T1D patients. GABA inhibited secretion of 5 of these cytokines from both T1D PBMCs and ND responder T cells. The results identify GABA as a potent regulator of both Th1- and Th2-type cytokine secretion from human PBMCs and CD4+ T cells where GABA generally decreases the secretion.
  •  
2.
  • Korol, Sergiy V, et al. (author)
  • Functional Characterization of Native, High-Affinity GABAA Receptors in Human Pancreatic β Cells
  • 2018
  • In: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 30
  • Journal article (peer-reviewed)abstract
    • In human pancreatic islets, the neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule synthesized by and released from the insulin-secreting β cells. The effective, physiological GABA concentration range within human islets is unknown. Here we use native GABAA receptors in human islet β cells as biological sensors and reveal that 100-1000nM GABA elicit the maximal opening frequency of the single-channels. In saturating GABA, the channels desensitized and stopped working. GABA modulated insulin exocytosis and glucose-stimulated insulin secretion. GABAA receptor currents were enhanced by the benzodiazepine diazepam, the anesthetic propofol and the incretin glucagon-like peptide-1 (GLP-1) but not affected by the hypnotic zolpidem. In type 2 diabetes (T2D) islets, single-channel analysis revealed higher GABA affinity of the receptors. The findings reveal unique GABAA receptors signaling in human islets β cells that is GABA concentration-dependent, differentially regulated by drugs, modulates insulin secretion and is altered in T2D.
  •  
3.
  • Carlsson, Per-Ola, et al. (author)
  • Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus
  • 2018
  • In: American Journal of Transplantation. - : Elsevier BV. - 1600-6135 .- 1600-6143. ; 18:7, s. 1735-1744
  • Journal article (peer-reviewed)abstract
    • Macroencapsulation devices provide the dual possibility to immunoprotect transplanted cells while also being retrievable; the latter bearing importance for safety in future trials with stem-cell derived cells. However, macroencapsulation entails a problem with oxygen supply to the encapsulated cells. The βAir device solves this with an incorporated refillable oxygen tank. This phase 1 study evaluated the safety and efficacy of implanting the βAir device containing allogeneic human pancreatic islets to patients with type 1 diabetes. Four patients were transplanted with 1-2 βAir devices, each containing 155000-180000 IEQ (i.e. 1800-4600 IEQ per kg body weight), and monitored for 3-6 months, followed by the recovery of devices. Implantation of the βAir device was safe and successfully prevented immunization and rejection of the transplanted tissue. However, although beta cells survived in the device, only minute levels of circulating C-peptide were observed with no impact on metabolic control. Fibrotic tissue with immune cells was formed in capsule surroundings. Recovered devices displayed a blunted glucose-stimulated insulin response, and amyloid formation in the endocrine tissue. We conclude that the βAir device is safe and can support survival of allogeneic islets for several months, although the function of the transplanted cells was limited.
  •  
4.
  • Bhandage, Amol, 1988-, et al. (author)
  • Expression of calcium release-activated and voltage-gated calcium channels genes in peripheral blood mononuclear cells is altered in pregnancy and in type 1 diabetes
  • 2018
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:12
  • Journal article (peer-reviewed)abstract
    • Calcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.g. gene transcription, cytokine secretion, proliferation and migration. Ca2+ can enter the cytoplasm either from intracellular stores or from outside the cells when Ca2+ permeable ion channels in the plasma membrane open. The Ca2+ release-activated (CRAC) channel is the most prominent Ca2+ ion channel in the plasma membrane. It is formed by ORAI1-3 and the channel is opened by the endoplasmic reticulum Ca2+ sensor proteins stromal interaction molecules (STIM) 1 and 2. Another group of Ca-2(+) channels in the plasma membrane are the voltage-gated Ca2+ (Ca-V) channels. We examined if a change in immunological tolerance is accompanied by altered ORAI, STIM and Ca-V gene expression in peripheral blood mononuclear cells (PBMCs) in pregnant women and in type 1 diabetic individuals. Our results show that in pregnancy and type 1 diabetes ORAI1-3 are up-regulated whereas STIM1 and 2 are down-regulated in pregnancy but only STIM2 in type 1 diabetes. Expression of L-, P/Q-, R- and T-type voltage-gated Ca2+ channels was detected in the PBMCs where the Ca(V)2.3 gene was up-regulated in pregnancy and type 1 diabetes whereas the Ca(V)2.1 and Ca(V)3.2 genes were up-regulated only in pregnancy and the Ca(V)1.3 gene in type 1 diabetes. The results are consistent with that expression of ORAI, STIM and Ca-V genes correlate with a shift in immunological status of the individual in health, as during pregnancy, and in the autoimmune disease type 1 diabetes. Whether the changes are in general protective or in type 1 diabetes include some pathogenic components remains to be clarified.
  •  
5.
  • Carlbom, Lina, et al. (author)
  • [(11)C]5-Hydroxy-Tryptophan PET for Assessment of Islet Mass During Progression of Type 2 Diabetes
  • 2017
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:5, s. 1286-1292
  • Journal article (peer-reviewed)abstract
    • [(11)C]5-hydroxy-tryptophan ([(11)C]5-HTP) PET of the pancreas has been shown to be a surrogate imaging biomarker of pancreatic islet mass. The change in islet mass in different stages of type 2 diabetes (T2D) as measured by non-invasive imaging is currently unknown. Here, we describe a cross-sectional study where subjects at different stages of T2D development with expected stratification of pancreatic islet mass were examined in relation to non-diabetic individuals. The primary outcome was the [(11)C]5-HTP uptake and retention in pancreas, as a surrogate marker for the endogenous islet mass.We found that metabolic testing indicated a progressive loss of beta cell function, but that this was not mirrored by a decrease in [(11)C]5-HTP tracer accumulation in the pancreas. This provides evidence of retained islet mass despite decreased beta cell function. The results herein indicates that beta cell dedifferentiation, and not necessarily endocrine cell loss, constitute a major cause of beta cell failure in T2D.
  •  
6.
  • Carlbom, Lina, et al. (author)
  • Pancreatic perfusion and subsequent response to glucose in healthy individuals and patients with type 1 diabetes
  • 2016
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:9, s. 1968-1972
  • Journal article (peer-reviewed)abstract
    • AIMS/HYPOTHESIS: The aim of this study was to investigate pancreatic perfusion and its response to a glucose load in patients with type 1 diabetes mellitus compared with non-diabetic ('healthy') individuals.METHODS: Eight individuals with longstanding type 1 diabetes and ten sex-, age- and BMI-matched healthy controls underwent dynamic positron emission tomography scanning with (15)O-labelled water before and after intravenous administration of glucose. Perfusion in the pancreas was measured. Portal and arterial hepatic perfusion were recorded as references.RESULTS: Under fasting conditions, total pancreatic perfusion was on average 23% lower in the individuals with diabetes compared with healthy individuals. Glucose increased total pancreatic and portal hepatic blood perfusion in healthy individuals by 48% and 38%, respectively. In individuals with diabetes there was no significant increase in either total pancreatic or portal hepatic perfusion.CONCLUSIONS/INTERPRETATION: Individuals with type 1 diabetes have reduced basal pancreatic perfusion and a severely impaired pancreatic and splanchnic perfusion response to intravenous glucose stimulation.
  •  
7.
  •  
8.
  • Carlsson, Per-Ola, et al. (author)
  • Mesenchymal Stromal Cells to Halt the Progression of Type 1 Diabetes?
  • 2015
  • In: Current Diabetes Reports. - : Springer Science and Business Media LLC. - 1534-4827 .- 1539-0829. ; 15:7
  • Journal article (peer-reviewed)abstract
    • No treatment to halt the progressive loss of insulin-producing beta-cells in type 1 diabetes mellitus has yet been clinically introduced. Strategies tested have at best only transiently preserved beta-cell function and in many cases with obvious side effects of drugs used. Several studies have suggested that mesenchymal stromal cells exert strong immunomodulatory properties with the capability to prevent or halt diabetes development in animal models of type 1 diabetes. A multitude of mechanisms has been forwarded to exert this effect. Recently, we translated this strategy into a first clinical phase I/IIa trial and observed no side effects, and preserved or even increased C-peptide responses to a mixed meal tolerance test during the first year after treatment. Future blinded, larger studies, with extended follow-up, are clearly of interest to investigate this treatment concept.
  •  
9.
  • Carlsson, Per-Ola, et al. (author)
  • Preserved Beta-Cell Function in Type 1 Diabetes by Mesenchymal Stromal Cells
  • 2015
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 64:2, s. 587-592
  • Journal article (peer-reviewed)abstract
    • The retention of endogenous insulin secretion in type 1 diabetes is an attractive clinical goal, which opens possibilities for long-term restoration of glucose metabolism. Mesenchymal stromal cells (MSCs) constitute, based on animal studies, a promising interventional strategy for the disease. This prospective clinical study describes the translation of this cellular intervention strategy to patients with recent onset type 1 diabetes. Twenty adult patients with newly diagnosed type 1 diabetes were enrolled and randomized to MSC treatment or to the control group. Residual beta-cell function was analyzed as C-peptide concentrations in blood in response to a mixed meal tolerance test (MMTT) at one-year follow-up. In contrast to the patients in the control arm, who showed loss in both C-peptide peak values and C-peptide when calculated as area under the curve during the first year, these responses were preserved or even increased in the MSC-treated patients. Importantly, no side effects of MSC treatment were observed. We conclude that autologous MSC treatment in new onset type 1 diabetes constitute a safe and promising strategy to intervene in disease progression and preserve beta-cell function.
  •  
10.
  • Christoffersson, Gustaf, et al. (author)
  • Matrix Metalloproteinase-9 Is Essential for Physiological Beta Cell Function and Islet Vascularization in Adult Mice
  • 2015
  • In: American Journal of Pathology. - : Elsevier BV. - 0002-9440 .- 1525-2191. ; 185:4, s. 1094-1103
  • Journal article (peer-reviewed)abstract
    • The availability of paracrine factors in the islets of Langerhans, and the constitution of the beta cell basement membrane can both be affected by proteolytic enzymes. This study aimed to investigate the effects of the extraceaular matrix-degrading enzyme gelatinase B/matrix metalloproteinase-9 (Mmp-9) on islet function in mice. Islet function of Mmp9-deficient (Mmp9(-/-)) mice and their wild-type Littermates was evaluated both in vivo and in vitro. The pancreata of Mmp9(-/-) mice did not differ from wild type in islet mass or distribution. However, Mmp9(-/-) mice had an impaired response to a glucose toad in vivo, with lower serum insulin levels. The glucose-stimulated insulin secretion was reduced also in vitro in isolated Mmp9(-/-) islets. The vascular density of Mmp9(-/-) islets was lower, and the capillaries had fewer fenestrations, whereas the islet blood flow was threefold higher. These alterations could partly be explained by compensatory changes in the expression of matrix-related proteins. This in-depth investigation of the effects of the loss of MMP9(-/-) function on pancreatic islets uncovers a deteriorated beta cell function that is primarily due to a shift in the beta cell phenotype, but also due to islet vascular aberrations. This likely reflects the importance of a normal islet matrix turnover exerted by MMP-9, and concomitant release of paracrine factors sequestered on the matrix.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view